Complex Neuro-Fuzzy Self-learning Approach to Function Approximation
نویسندگان
چکیده
A new complex neuro-fuzzy self-learning approach to the problem of function approximation is proposed, where complex fuzzy sets are used to design a complex neuro-fuzzy system as the function approximator. Particle swarm optimization (PSO) algorithm and recursive least square estimator (RLSE) algorithm are used in hybrid way to adjust the free parameters of the proposed complex neuro-fuzzy systems (CNFS). The hybrid PSO-RLSE learning method is used for the CNFS parameters to converge efficiently and quickly to optimal or near-optimal solution. From the experimental results, the proposed CNFS shows better performance than the traditional neuro-fuzzy system (NFS) that is designed with regular fuzzy sets. Moreover, the PSORLSE hybrid learning method for the CNFS improves the rate of learning convergence, and shows better performance in accuracy. Three benchmark functions are used. With the performance comparisons shown in the paper, excellent performance by the proposed approach has been observed.
منابع مشابه
ART-Based Neuro-fuzzy Modelling Applied to Reinforcement Learning
The mountain car problem is a well-known task, often used for testing reinforcement learning algorithms. It is a problem with real valued state variables, which means that some kind of function approximation is required. In this paper, three reinforcement learning architectures are compared on the mountain car problem. Comparison results are presented, indicating the potentials of the actor-onl...
متن کاملA Neuro-Fuzzy Approach to Obtain Interpretable Fuzzy Systems for Function Approximation
Fuzzy systems can be used for function approximation based on a set of linguistic rules. We present a method to obtain the necessary parameters for such a fuzzy system by a neuro-fuzzy training method. The learning algorithm is able to determine the structure and the parameters of a fuzzy system from sample data. The approach is an extension to our already published NE-FCON and NEFCLASS models ...
متن کاملپیش بینی زبری سطح در تراش کاری خشک به کمک شبکه های فازی- عصبی تطبیقی
Optimization of machining parameters is very important and the main goal in every machining process. Surface finishing prediction is a pre-requirement to establish a center for automatic machining operations. In this research, a neuro-fuzzy approach is used in order to model and predict the surface roughness in dry turning. This approach has both the learning capability of neural network and li...
متن کاملNeuro-fuzzy systems for function approximation
We propose a neuro{fuzzy architecture for function approximation based on supervised learning. The learning algorithm is able to determine the structure and the parameters of a fuzzy system. The approach is an extension to our already published NEFCON and NEFCLASS models which are used for control or classiication purposes. The proposed extended model, which we call NEFPROX, is more general and...
متن کاملA New Approach to Artificial Immune Systems and its Application in Constructing On-line Learning Neuro-Fuzzy Systems
In this paper, we present an on-line learning neuro-fuzzy system which was inspired by parts of the mechanisms in immune systems. It illustrates how an on-line learning neuro-fuzzy system can capture the basic elements of the immune system and exhibit some of its appealing properties. During the learning procedure, a neuro-fuzzy system can be incrementally constructed. We illustrate the potenti...
متن کامل